FAQ – Wie kann man bei SandStat komplette Stützweitentabellen erstellen?

SandStat beinhaltet ein Modul, mit dem Sie komplette Stützweiten berechnen können. Dieses Modul ist nicht in der Grundversion enthalten und muss durch den Lizenzgeber frei geschaltet sein.

Allgemeine Vorgehensweise

*) Hinweis: die in diesen Masken gemachten Vorgaben werden bei der Erstellung der Stützweitentabellen nicht berücksichtigt, da das statische System und die Belastung neu generiert werden.

Wichtiger Hinweis: bei der Erstellung der Ergebnisdateien als txt-Datei wird als Dateiname u.a. das Datum bzw. die Uhrzeit verwendet. Bei gewissen Datumsformaten (z.B. "dd/mm/yyyy") von Seiten Microsoft Windows kann es zu Fehlermeldungen kommen. Das bevorzugte Format lautet "dd.mm.yyyy".

Erläuterungen

Nach der Elementauswahl sowie der Eingabe des statischen Systems und der Belastung wird bei dem Menü 🗐 "Rechnen" (ggfs. auch nach Anpassung der Lastfaktoren und Kombinationsbeiwerte) das Iterationsmenü durch Auswählen von "Stützw. <u>k</u>ompl." gestartet.

Bitte beachten Sie dabei, dass das vorgegebene System sowie die evtl. generierten Lasten nicht bei der Stützweitenberechnung berücksichtigt werden.

Gesamtkontrolle				
Sie haben nachfolge	nd dargestellte Systemdaten eir gestartet werden, oder wo	ngegeben. Soll die Bero Ilen Sie etwas ändern?	echnung mit diesen	Daten
statisches System	<u>−</u>	Projektdaten Dach-Bauteil über 3 Fe 5,0° (8,7%)eingebaut. Hersteller: Muster / Sar Element: Muster-Dach// Kernmaterial: PUR Berechnungsgrundlage	lder, in Richtung der Da nple Sample-roof 140 0,63 (e: Muster/Sample	chneigung von A
↓ 2,00 m↓ 2,00 m ↓ 6,00 m M = 1:95	,ł	Belastungsdaten Ständige Last g senkr. Schneelast s senkr. üb Windsog über I: ws = -	über I = 0,140 kN/m² er I = 0,645 kN/m² 0,300 kN/m²	~
		Berechnung nach DIN EN 14509 mit l	Deutscher Zulassur	
<u>S</u> tützweite Stützw. <u>k</u> ompl.	Zul. Last	Lastfaktoren und Kombi DIN EN 1990/NA: 2010 DIN EN 1990/NA:2010	nationsbeiwerte I-12, Tab. NA.A.1.2(B) 12: Kategorie H, Orte b	is zu NN +1000 m
		<u>R</u> echnen	Lastfak	Ändern

In der nachfolgenden Maske können die Iterationsvorgaben festgelegt werden:

- Speicherort der Ergebnis-Dateien
- Anzahl der Felder
- Festlegung der zu berücksichtigenden Farbgruppen sowie deren Grundlagen (siehe Seite 6)
- Angabe der anzusetzenden Lasten (Winddruck, Windsog, Windsog bei Schrauben sowie bei Dachelementen zusätzlich andrückenden Lasten "delta g" und Schnee)
- Eventuell Vorgabe zu den Auflagerbreiten bei den andrückenden Lasten (siehe Anmerkungen Seite 7)
- Vorgabe der maximalen Auflagerkräfte N_{Rd} bei der Verbindung mit der Unterkonstruktion (siehe Anmerkungen Seite 7)
- Angaben zur Berücksichtigung von Verformungen
- Vorgabe von weiteren konstanten Lasten (siehe Anmerkungen Seite 8)
- Auswahl der zu berechnenden Elemente

gemein	Schnee	Winddruck	Windsog	Windsog Schrauben	Delta g	Konstante		
Speicherort -				•				
C:\Users\fi	sch\Documents\Must	er-Stützweitentabellei	n			⇐		
Anzahl Foldo		- Earbaru						
Anzani <u>r</u> eiue	•	i aibgiù	ppen	Grundlage der Farbgr	ruppen:			
		🔽 Fa	▼ Farbgruppe I					
1	bis 3	🔽 Fa	rbgruppe II	O besondere Temp	eraturen			
		🔽 Fa	rbgruppe III	pe III C Holländische Norm				
Belastung								
andrückend	e Lasten		- Γ	abhebende Lasten				
delta g) 🔽 Schnee			Vindsog 🗸				
	🔽 Winddruc	k		🔲 Windsog für Schraube	n			
maximale End maximale Zwi:	lauflagerbreite a = schenauflagerbreite b	= 6,00 cm		N _{Rd,} Endauflager N _{Rd,} Zwischenauflager	=	kN/m <u>i</u> kN/m		
<u>V</u> erformunger	n							
	(● Ja	Fe	ldverformungen urzzeitbelastung	_				
	C Nein		positive Verformung negative Verformun	$= L_i / 20$ $= L_i / 20$	00			
	O Ja und Nei	n	angzeitbelastung positive Verformung negative Verformun	g = L _i / 10 g = L _i / 10	00			
Muster-Dach/Sa	ample-roof 140 0,63 0,	50		•		< Ändern		

Nach Auswahl einer Belastungsart auf dem ersten Reiter wird der entsprechende Reiter zur Eingabe der Lastwerte innerhalb dieser Maske freigeschaltet.

Die Belastung Schnee sowie "delta g" ist nur auswählbar, wenn bei der Elementauswahl ein Dachelement definiert wurde.

lterationsangaben [achlasten					
Allgemein	Schnee	Winddruck	Windsog	Windsog Schrauben	Delta g	Konstanten
Generierun Anzahl S Startwert Abstufun	ig chneelasten : Schneelast gsschritte	15 0 0,25	kN/m² kN/m²		abstufung löschen astgenerierung	
Schneelas s 01 = [0 s 02 = [0 s 03 = [0 s 04 = [0 s 05 = [1 s 06 = [1 s 07 = [1 s 09 = [2 s 11 = [2 s 12 = [2 s 13 = [3 s 14 = [3 s 15 = [3]	ten kN/m² (25 kN/m² (5 kN/m² (75 kN/m² (75 kN/m² (5 kN/m² (75 kN/m²) (75 kN/m²					
			Berech	nung starten	Abb	echen

Bei dem entsprechenden Reiter können die Lasten generiert werden, indem man die Anzahl der Lasten, den Startwert der Generierung und die Abstufungsschritte angibt. Mit dem Klick auf das Feld "Lastgenerierung" werden die einzelnen Lastwerte erstellt. Nachfolgend können einzelne Lastenwerte noch manuell verändert werden.

Tipp: Ein Lastwert von 0,0 kN/m² sollte vermieden werden, um nicht numerische Unstetigkeiten hervorzurufen. In diesem Fall kann man den automatisch erzeugten Wert hinterher manuell in z. B. 0,01 kN/m² abändern.

Bemerkungen zur Eingabe

- Es können nur Systeme mit gleichen Stützweiten betrachtet werden.
- Die Belastungen werden konstant über die Trägerlänge angesetzt.
- Bei dem Ansatz der Temperaturlasten sind folgende Grundlagen hinterlegt:

Jahreszeit	Sonnenein- strahlung	Standsicher- heitsnachweis	chweis		
			Farbgruppe"	Hell	ig.")
		θa		[%]	θa
Winter		-20 °C	alle	90 - 8	-20 °C
bei gleichzeitiger Schneeauflast		0 °C	alle	90 - 8	0 °C
Sommer	direkt	+80 °C	1 11 11	90 - 75 74 - 40 39 - 8	+55 °C +65 °C +80 °C
	indirekt	+40 °C	alle	90 - 8	+40 °C

Nach Deutschen Zulassungen

Innentemperatur im Sommer +25°C im Winter + 20°C

Besondere Temperaturen

manuelle Eingabe in tabellarischer Form:

3 besondere Temperaturen - 🗆 🗙										
	•				1					
-lla Astanbastis (201		Son	nmer			Wi	√inter			
alle Angaben in [U]	Tf	w	Gf	1W	ohne S	chnee	mitSchnee			
	Aussen	Innen	Aussen	Innen	Aussen	Innen	Aussen	Innen	L	
Farbgruppe I	80	25	55	25	-20	20	0	20		
Farbgruppe II	80	25	65	25	-20	20	0	20	Γ	
Farbgruppe III	80	25	80	25	-20	20	0	20	Γ	
-					Abbreck	hen		ו	Г 1	

Nach Holländischer Norm

Wie nach Deutscher Zulassung, jedoch Ansatz der Temperatur im Sommer beim Gebrauchsfähigkeitsnachweis:

- Farbgruppe I: 50°C
- Farbgruppe II: 60°C
- Farbgruppe III: 75°C Innentemperaturen hier bei Sommer wie Winter mit 20°C

- Wenn mehrere Elemente betrachtet werden, wird das jeweilige Eigengewicht, welches in der Datenbank hinterlegt ist, angesetzt.
- In den Feldern zur Auflagerbreite können Auflagerbreiten vorgegeben werden. Diese werden bei der Iteration der andrückenden Lasten (Winddruck sowie bei Dachelementen "delta g" und Schnee) berücksichtigt.
- Die maximalen Auflagerkräfte werden bei der Iteration Windsog Schrauben benötigt. In den entsprechenden Feldern wird die maximale Zugkraft für die Verbindung mit der Unterkonstruktion als N_{Rd} als design-Wert - getrennt für End- und Zwischenauflager - angegeben. Insbesondere bei Wandelementen mit verdeckter Befestigung ist dieser Nachweis erforderlich.

Falls keine Verbindung mit der Unterkonstruktion berücksichtigt werden soll, sollte das entsprechende Häkchen bei "Windsog für Schrauben" nicht ausgewählt werden. Ggf. kann auch die Begrenzung der Stützweite infolge der Befestigungskräfte nur am Zwischenauflager oder am Endauflager erfolgen.

Bei der Betrachtung von mehreren Sandwichelemente erfolgt keine Differenzierung der N_{Rd} -Werte; es werden für alle ausgewählten Sandwichelemente die vorgegebenen Werte angesetzt. Daraus folgt, dass bei Berechnung mehrerer Elementtypen mit unterschiedlichen anzusetzenden N_{Rd} -Werten diese einzeln (oder in Gruppen gefasst) durch mehrmaliges Aufrufen dieser Maske berechnet werden müssen.

 Im Tabellenreiter "Konstanten" können weitere konstante Lasten definiert werden, die nicht iterativ angesetzt werden. Diese Lasten werden dann mit den variablen Lasten überlagert.

Hierbei ist auch die Angabe einer Verkehrslast möglich, die konstant über die Trägerlänge angesetzt wird.

Des Weiteren kann auch eine Mannlast definiert werden, die mit einem vorgegebenen Wert (in der Regel 1,0 kN) an einer definierten Stelle im Feld angesetzt werden kann. Hierbei erfolgt die Angabe des Angriffspunktes der Last bezogen auf die Trägerlänge von 0 (Ansatz am linken Auflager) über 0,5 (Ansatz in Feldmitte) bis zu 1,0 (Ansatz am rechten Auflager) mit einem beliebigen Wert zwischen 0 und 1,0.

An dieser Stelle möchten wir darauf hinweisen, dass bei Ansatz von Verkehrslasten und/oder Mannlasten die Kombinationsbeiwerte angepasst werden müssen, sodass ggfs. eine Überlagerung mit anderen Lastfällen auch durchgeführt wird.

Das weitere Eigengewicht wirkt wie das Eigengewicht des Sandwichelementes und wird bei den Nachweisen immer angesetzt. Das zusätzliche Eigengewicht aus eventuell entfernbaren Eigenlasten hingegen werden bei der Überlagerung mit Windsoglasten nicht berücksichtigt.

Allgemein	Schnee	Winddruck		Windsog	Windsog Schrauben	Delta g	Konstante
Konstante	Lasten						
wei	teres Eigengewicht	-	-g =		0 kN/m²		
zus	ätzliches Eigengewich	t Z	\g =		0 kN/m²		
Scł	nneelast		s =		0 kN/m²		
Wir	nddruck	v	vd =		0 kN/m²		
Ver	kehrslast		p =		0 kN/m²		
м	annlast		m =		0 kN		
	1 1						
	$\downarrow \downarrow$		с _т =	0	5		
	$\mathbf{x}_d \mathbf{x}_m = 0$	0.5	x _d =		[0, 1]		
Pos	ationen innerhalb des i	ersten Felds					
103		313(0111)0103					
			Г	142 12		1	

lgemein	Schnee	Winddruck	Windsog	Windsog Schrauben	Delta g	Konstante	
-Speicherort				· · ·			
C:\Users\f	isch\Documents\Muste	-Stützweitentabelle	n				
Anzahl <u>F</u> elde	er	Farbgru	ppen	Cumuluan das Fachas			
		🔽 Fa	rbarunne l		uppen.		
1 bis 3		Fa I Fa	rbaruppe II	• Deutsche Zulass	ung		
	10	Fa I Fa	C besondere Temperaturen Farboruppe III				
				 O Hollandische Nor 	m		
Belastung							
andrücken	de Lasten			abhebende Lasten			
🔲 🗖 delta g	g 🔽 Schnee			🔽 Windsog			
	🔽 Winddruck			🔲 Windsog für Schraube	n		
Verformunge		10,00			,		
<u>+</u> enomiange	 € Ja	⊺ Fe	ldverformungen				
		ĸ	urzzeitbelastung		_		
	C Nein		positive Verformung	$= L_{1}/[20]$			
	11011	_	negative verrormur	ig = L _i / 20			
		L	angzeitbelastung		_		
	○ Ja und Nein		positive Verformung) = L _i / 10			
			negauve verrormur				
						Ändern	
Muster-Dach/S	ample-roof 140 0,63 0,5)		•			
Muster-Dach/S	ample-roof 140 0,63 0,5)		`			

Falls Stützweitentabellen für mehrere Sandwichelemente erstellt werden sollen, können diese im unteren Bereich der Maske ausgewählt werden.

Dabei ist jedoch zu beachten, dass lediglich die Sandwichelemente angezeigt werden, die bei dem zuvor ausgewählten Hersteller hinterlegt sind. Es können daher nicht die Elemente

verschiedener Hersteller in einem Durchlauf berechnet werden. Für eine Mehrfachauswahl verwenden Sie bitte die Windows-Funktionen mit der STRG-Taste (für mehrere Auswahlen die nicht aufeinanderfolgen) bzw. der Shift-Taste (Mehrfachauswahl mehrerer aufeinanderfolgender Elemente der Liste). Wenn alle Lastwerte vorgegeben sind, erfolgt die Berechnung mit dem Klick auf das Feld "Berechnung starten". Bitte beachten Sie hierbei, dass sich die Berechnungszeit dieser Stützweitentabellen insbesondere wenn viele Optionen oder Elemente ausgewählt wurden - sehr lang sein kann. Abhängig von der Performance Ihres Rechners kann sich die Berechnung über mehrere Stunden hinziehen, während der Rechner für andere Anwendungen eventuell zu langsam wird. Bitte daher am Anfang erst wenig Optionen freischalten, eventuell über Nacht rechnen lassen oder von vornherein einen gerade nicht anderweitig verwendeten Computer für die Stützweitentabellen-Berechnung verwenden.

SandStat beginnt bei der Iteration mit der von Ihnen vorgegebenen Belastung und mit einer Stützweite von 1 m. Diese Stützweite wird in Abhängigkeit von der maximalen Ausnutzung erhöht bzw. reduziert. Bei Erreichen einer Ausnutzung von 99,8% bis 100,4% wird die Iteration beendet. Falls nach 100 Iterationsschritten nicht diese Bedingung (maximale Ausnutzung zwischen 99,8% und 100,4%) erreicht wurde, wird die Iteration abgebrochen und bei der Ausgabe der Ergebnisse entsprechend vermerkt.

Nach dem Beenden der Iterationsschritte wird die nächste Last angesetzt und die Iteration von neuem durchgeführt bis alle vorgegebenen Stützweiten berechnet wurden. Ausgabe der Ergebnisse und der Stützweitentabellen

Die Ausgabe der Ergebnisse erfolgt in mehreren Dateien, die sich in dem vorgegeben Speicherort befinden:

- "Elementbezeichnung Vorgaben.TXT"
- "StuetzW.Log"
- "Schnee-Dach/Wand Elementbezeichnung.TXT"
- "Table-Schnee-Dach/Wand Elementbezeichnung.TXT" (falls Schnee berücksichtigt wurde)
- "Winddruck-Dach/Wand Elementbezeichnung.TXT"
- "Table-Winddruck-Dach/Wand Elementbezeichnung.TXT" (falls Winddruck berücksichtigt wurde)

usw. für die jeweils ausgewählte Lastart...

Nachfolgend werden die einzelnen Ergebnisdateien einzeln betrachtet und an einer Beispielsberechnung erläutert.

1) Grundlangen und Vorgaben zur Berechnung der Stützweitentabelle in der Datei "*Elementbezeichnung* – Vorgabe.TXT"

In der Textdatei "*Elementbezeichnung* – Vorgabe.TXT" sind die Vorgaben zu der Berechnung der Stützweitentabellen wie z.B. die Elementkenndaten, die Lastangaben etc. hinterlegt. Die Datei kann mit dem windowseigenen Programm WordPad oder mit einem anderen üblichen Textverarbeitungsprogramm wie z.B. Microsoft© Word geöffnet werden.

Nachfolgend ein Beispiel mit der Datei "MusterDachSampleRoof 14 0_630_55 – Vorgaben.TXT":

Stützweiteniteration für Element Muster-Dac	h/Sample-roof 140.0.63.0.50
Herstellerhezeichnung Muster / Sample	
Zulassung/Porochnungsarundlago Mustor/S	amplo
Zulassung/Derechnungsgrundlage Muster/Se	ampie
verwendung als Dachelement	
Dachneigung 5,0°	
Version 4.08.080	
Start der Iteration am 26.10.2021	
Vorgabe Schraubenzugkräfte	
am Endauflager NRd = 0.00 kN	
am Zwischenauflager + NPd = 0.00 kN	
Vorgabo Auflagorbroiton:	
Finderafte see 4.0 area	
Endaullager = 4,0 cm	
Zwischenauflager = 6,0 cm	
Gesamleiement	
Gesamtdicke D = 140 mm	
Schwerlinienabstand e =108,593 mm	
oberer Hebelarm R1 = 44,5168 mm	
unterer Hebelarm R2 = 64,0762 mm	
Eigengewicht g = 0,141 kN/m ²	
5 5 5	
Kernmaterial	
Material PUR	
Schubmodul G_c = 3,7 N/mm ²	
Kriechfaktor psi t für Eigengewicht =	3,5
Kriechfaktor mit psi t für Schnee =	2.5
Schubfestigkeit f Cv = 0.12 N/mm ²	
Schubfestigkeit f CV unter Langzeit -	0.06 N/mm ²
Druckfostigkoit f Cc = 0.12 N/mm ²	0,00 14/1111
Lastausbreitungsfektor k 0	
Äußere Deckschicht	
Matorial S250CD	
E Modul E E1 210000 N/mm	2 7
E-IVIOUUI E_F I = 210000 IV/IIII	•
Streckgrenze I_Ft1 = 350 IV/mm ²	0.000010.1/0
warmeausdennungskoeffizient alpha_F I =	0,0000121/*
Nennblechdicke t_nom = 0,63 mm	
Kernblechdicke t_1 = 0,56 mm	
Querschnittsfläche A_1 = 6,343187 mm	2
Flächenträgheitsmoment I_1 =	13,31376mm^4
Schwerpunktsabstand d_11 =	30,332 mm
Schwerpunktsabstand d_12 =	9,468 mm
Bemessungsgrenzwerte der Deckschichtspa	nnungen
sigma_11_Feld_kleiner 20°C =	296 N/mm ²
sigma 11 Stütze kleiner 20°C =	296 N/mm ²
sigma 11 Feld größer 20°C =	296 N/mm ²
sigma 11 Stütze größer 20°C =	296 N/mm ²
Innere Deckschicht:	2/01/01/01
Matorial \$250CD	
E Modul E E2 210000 M/mm	52
	r-
Streckgrenze i_Ftz = 350 IV/Mm ²	0.000010.1%
warmeausdennungskoeffizient alpha_F2 =	0,000012 1/
ivennbiechdicke t_nom = 0,5 mm	
Kernblechdicke t_2 = 0,435 mm	
Querschnittsfläche A_2 = 4,390663 mm	2
Flächenträgheitsmoment I_2 =	0mm^4
Schwerpunktsabstand d_21 =	0,55 mm
Schwerpunktsabstand d_22 =	0,55 mm
· · -	

l	Bemessungsgrenzwerte der	Deckschicht	tspannungen	
	sigma_11_Feld_kleiner 20°	C	= 155,1 N/m	m ²
	sigma_11_Stutze_ktellel zt sigma_11_Feld_größer 20°	C	= 140,1 N/m = 131.9 N/m	m ²
l	sigma_11_Stütze_größer 20	- D°C	= 119,1 N/m	m²
	33			
	Materialsicherheitsfaktoren:	ibiakoit		
	Fließen der äußeren Metallo	leckschicht	= 1 1	
	Knittern der äußeren Metalle	deckschicht i	m Feld	= 1,15
	Knittern der äußeren Metalle	deckschicht a	im Auflager	= 1,15
	Fließen der inneren Metalld	eckschicht	= 1,1	
	Knittern der inneren Metalld	eckschicht in	n Feld m Auflagor	= 1,15
	Scherversagen des Kerns	= 1.36	n Aunayer	= 1,10
	Scherversagen einer profilie	ten Deckschi	icht	= 1,1
	Druckversagen des Kerns	= 1,36		
	Lastaufnahmevermögen ein Im Grenzzustand der Gebra	er profilierter uchstauglich	n Deckschicht keit	= 1,1
	Knittern der äußeren Metallo	ieckschicht i	= I m Feld	- 1 03
	Knittern der äußeren Metalle	deckschicht a	m Auflager	= 1,03
	Fließen der inneren Metallde	eckschicht	= 1	
	Knittern der inneren Metalld	eckschicht im	n Feld	= 1,03
	Knittern der inneren Metalld	eckschicht ar	m Auflager	= 1,03
l	Scherversagen des Kerns	= I, I ten Deckschi	icht	_ 1
l	Druckversagen des Kerns	= 1.1	witt	- 1
l	Lastaufnahmevermögen ein	er profilierter	n Deckschicht	= 1
I	5			
l	Kombinationskoeffizient:	0.5		
l	psi_0 für Wind	= 0,5		
	psi_0 iur wind nsi_0 für Temperatur	= 0,6 - 0.6		
	psi_0 für Temperatur mit Inc	lex a	= 1	
	psi_0 für Verkehrslast	= 0		
	psi_1 für Schnee	= 0,2		
	psi_1 für Schnee Index b	= 0,2		
	psi_l für Wind Index b	= 0,2		
	psi_1 für Temperatur	= 0,2		
	psi_1 für Temperatur mit Inc	lex a	= 0	
	psi_2 für Schnee	= 0		
	psi_2 für Wind	= 0		
	psi_2 für Temperatur	= U	1	
	psi_2 für Verkehrslast	= 0	- 1	
	Lastfaktoren: DIN EN 1990/	NA: 2010-12,	Tab. NA.A.1.2	!(B)
l	ständige Lasten ungünstig	= 1.35		
ĺ	ständige Lasten günstig	= 1		
l	veränderliche Lasten	= 1,5		
ĺ	Temperatur = 1,5			
ĺ	Kriecheinflüsse	= 1		
l	ständige Lasten	= 1		
l	veränderliche Lasten	= 1		
ĺ	Temperatur = 1			
l	Kriecheinflüsse	= 1		
l				
	Vorformunachoaronzuna			
	- Mit Verformungsbegrenzung.	naen		
	Kurzzeitig positiv	= L/200		
	Kurzzeitig negativ	= L/200		
	Langzeitig positiv	= L/100		
l	Langzeitig negativ	= L/100		
ĺ				
l	Temperaturlasten:			
l	Farbgruppe 1			
l	Sommer, TfNW, außen: 8	0° K		
l	Sommer, TfNW, innen: 25	°К		
l	Sommer, GfNW, außen: 5	l5°K ≅v		
l	Winter obne Schnoo TfM) N MauRon ທ	0° K	
l	Winter ohne Schnee TfN	N, innen 20°	'K	
l	Winter mit Schnee. TfNW	außen: 0° K		
I	Winter mit Schnee, TfNW	innen: 20° K	(

Temperaturlasten:
Farbgruppe 2
Sommer, TfNW, außen: 80° K
Sommer, TfNW, innen: 25° K
Sommer, GfNW, außen: 65° K
Sommer, GfNW, innen: 25° K
Winter ohne Schnee, TfNW, außen: -20° K
Winter ohne Schnee, TfNW, innen: 20° K
Winter mit Schnee, TfNW, außen: 0° K
Winter mit Schnee, TfNW, innen: 20° K
Tomporaturlaston
remperaturiasten.
Farbgruppe 3
Farbgruppe 3 Sommer, TfNW, außen: 80° K
Farbgruppe 3 Sommer, TfNW, außen: 80° K Sommer, TfNW, innen: 25° K
Farbgruppe 3 Sommer, TfNW, außen: 80° K Sommer, TfNW, innen: 25° K Sommer, GfNW, außen: 80° K
Farbgruppe 3 Sommer, TfNW, außen: 80° K Sommer, TfNW, innen: 25° K Sommer, GfNW, außen: 80° K Sommer, GfNW, innen: 25° K
Farbgruppe 3 Sommer, TfNW, außen: 80° K Sommer, TfNW, innen: 25° K Sommer, GfNW, außen: 80° K Sommer, GfNW, innen: 25° K Winter ohne Schnee, TfNW, außen: -20° K
Farbgruppe 3 Sommer, TfNW, außen: 80° K Sommer, TfNW, innen: 25° K Sommer, GfNW, außen: 80° K Sommer, GfNW, innen: 25° K Winter ohne Schnee, TfNW, außen: -20° K Winter ohne Schnee, TfNW, innen: 20° K
Farbgruppe 3 Sommer, TfNW, außen: 80° K Sommer, TfNW, innen: 25° K Sommer, GfNW, außen: 80° K Sommer, GfNW, innen: 25° K Winter ohne Schnee, TfNW, außen: -20° K Winter ohne Schnee, TfNW, innen: 20° K Winter mit Schnee, TfNW, außen: 0° K

Bitte überprüfen Sie diese Angaben jeweils äußerst kritisch.

2) Ergebnisse der einzelnen Lasten am Beispiel Schneelast

In der Datei "Schnee-*Elementbezeichnung*.TXT" sind die Einzelergebnisse für diese Lastart zu finden. Sie kann mit dem windowseigenen Programm WordPad oder mit einem anderen üblichen Textverarbeitungsprogramm wie z.B. Microsoft© Word geöffnet werden.

Es besteht die Möglichkeit, die Ergebnisse in Microsoft Excel © zu kopieren, um eine übersichtliche tabellarische Darstellung zu erhalten (Trennzeichen = Tabulator)

Felder	Stützweite	EnAuflBreite	ZwAuflBreite	g	dg	S	wd	wsa	WSS	dTSG
1	9270	4	6	0,141	0	0	0	0	0	30
1	8522	4	6	0,141	0	0,25	0	0	0	30
1	7496	4	6	0.141	0	0.5	0	0	0	30
1	5360	4	6	0.141	0	0.75	0	0	0	30
1	4171	4	6	0,141	0	1	0	0	0	30
1	9270	4	6	0,141	0	0	0	0	0	40
1	8522	4	6	0.141	0	0.25	0	0	0	40
1	7496	4	6	0.141	0	0.5	0	0	0	40
1	5360	4	6	0.141	0	0,75	0	0	0	40
1	4171	4	6	0,141	0	1	0	0	0	40
1	9270	4	6	0,141	0	0	0	0	0	55
1	8522	4	6	0,141	0	0,25	0	0	0	55
1	7496	4	6	0.141	0	0,5	0	0	0	55
1	5360	4	6	0,141	0	0,75	0	0	0	55
1	4171	4	6	0,141	0	1	0	0	0	55
2	12879	4	6	0,141	0	0	0	0	0	30
2	9353	4	6	0,141	0	0,25	0	0	0	30
dTST	dTM	dTMms	M	×M	2	FG	rul f	TfNIM/ Sigma		TENNAL AUEL A
uisi	uivv	urwins	IVI	XIVI	þ	ru	zui_i	THAVY_SIgma	THVV_Tau	HINW_AUII_A
55	-40	-20	0	0	0	1	200	0,3694	0.2572	0.25
55	-40	-20	0	0	0	1	200	0,6296	0,4332	0,6825
55	-40	-20	0	0	0	1	200	0,8164	0,6258	0,9986
55	-40	-20	0	0	0	1	200	0,6968	0,5953	0,9988
55	-40	-20	0	0	0	1	200	0,6495	0,5647	0,9988
55	-40	-20	0	0	0	2	200	0,3694	0,2572	0,25
55	-40	-20	0	0	0	2	200	0,6296	0,4332	0,6825
55	-40	-20	0	0	0	2	200	0,8164	0,6258	0,9986
55	-40	-20	0	0	0	2	200	0,6968	0,5953	0,9988
55	-40	-20	0	0	0	2	200	0,6495	0,5647	0,9988
55	-40	-20	0	0	0	3	200	0,3694	0,2572	0,25
55	-40	-20	0	0	0	3	200	0,6296	0,4332	0,6825
55	-40	-20	0	0	0	3	200	0,8164	0,6258	0,9986
55	-40	-20	0	0	0	3	200	0,6968	0,5953	0,9988
55	-40	-20	0	0	0	3	200	0,6495	0,5647	0,9988
55	-40	-20	0	0	0	1	200	0,5424	0,3256	0,3473
55	-40	-20	0	0	0	1	200	0 7251	0 4905	0 7/01

Nachfolgend ein Auszug aus der Beispielsrechnung....

iS - engineering GmbH _____

TfNW_Aufl_B	GfNW_Sigma	GfNW_Tau	GfNW_Aufl_A	GfNW_Aufl_B	GfNW_Ver	Bef_End	NRd_End	Bef_Zw	NRd_Zw
0	0.2414	0 1223	0.1498	0	0.9982	0	0	0	0
0	0.4047	0.2375	0.3818	0	0.9994	0	0	0	0
0	0.5237	0.3371	0.5506	0	0.8896	0	0	0	0
0	0.4578	0.3152	0.5472	0	0.54	0	0	0	0
0	0,4364	0,2944	0,5453	0	0,389	0	0	0	0
0	0,2414	0,1319	0,1498	0	0,9982	0	0	0	0
0	0,4047	0,2375	0,3818	0	0,9994	0	0	0	0
0	0,5237	0,3371	0,5506	0	0,8896	0	0	0	0
0	0,4578	0,3152	0,5472	0	0,54	0	0	0	0
0	0,4364	0,2944	0,5453	0	0,389	0	0	0	0
0	0,2414	0,1464	0,1498	0	0,9982	0	0	0	0
0	0,4047	0,2375	0,3818	0	0,9994	0	0	0	0
0	0,5237	0,3371	0,5506	0	0,8896	0	0	0	0
0	0,4578	0,3152	0,5472	0	0,54	0	0	0	0
0	0,4364	0,2944	0,5453	0	0,389	0	0	0	0
0,4631	0,9982	0,1604	0,216	0,4434	0,8031	0	0	0	0
0,9988	0,9811	0,2681	0,3277	0,7584	0,5147	0	0	0	0

Aufl1_TfNW Aufl2_TfNW Aufl3_TfNW Aufl4_TfNW Aufl1_GfNW Aufl2_GfNW Aufl3_GfNW Aufl4_GfNW NSd_End NSd_Zw

1	1	0	0	0,6	0,6	0	0	0	0
2,73	2,73	0	0	1,53	1,53	0	0	0	0
3,99	3,99	0	0	2,2	2,2	0	0	0	0
4	4	0	0	2,19	2,19	0	0	0	0
4	4	0	0	2,18	2,18	0	0	0	0
1	1	0	0	0,6	0,6	0	0	0	0
2,73	2,73	0	0	1,53	1,53	0	0	0	0
3,99	3,99	0	0	2,2	2,2	0	0	0	0
4	4	0	0	2,19	2,19	0	0	0	0
4	4	0	0	2,18	2,18	0	0	0	0
1	1	0	0	0,6	0,6	0	0	0	0
2,73	2,73	0	0	1,53	1,53	0	0	0	0
3,99	3,99	0	0	2,2	2,2	0	0	0	0
4	4	0	0	2,19	2,19	0	0	0	0
4	4	0	0	2,18	2,18	0	0	0	0
1,39	2,78	1,39	0	0,86	2,66	0,86	0	0	0
3	5,99	3	0	1,31	4,55	1,31	0	0,15	0

Erläuterungen zu den Spaltenbezeichnungen:

Felder Stützweite	 Anzahl der Felder (statisches System) maximal zulässige Stützweite bei den nachfolgenden Lasten
EnAuflBreite ZwAuflBreite	in mm - vorgegebene Endauflagerbreite in mm - vorgegebene Zwischenauflagerbreite in mm
g dg	 Elementeigengewicht in kN/m² angesetztes zusätzliches Elementeigengewicht in kN/m²
s wd	 Winddruck in kN/m²
wsa wss	 Windsog Elementnachweis in kiV/m² Windsog der Schrauben in kN/m²
dTSG dTST	 Temperaturdifferenz Sommer Gebrauchstauglichkeitsnachweis Temperaturdifferenz Sommer Tragfähigkeitsnachweis
dTW dTWms	 Temperaturdifferenz Winter Temperaturdifferenz Winter mit Schnee
M ×M	 Mannlast in kN bezogener Abstand Mannlast auf die Stützweite
p FG	 kurzeitige Verkehrslast in kN/m² Farbgruppe
zul_f	- angesetzte Durchbiegungsbegrenzung
Tfnw_Sigma	 Ausnutzungsgrad f ür Tragf
Tfnw_Tau	 Ausnutzungsgrad f ür Tragf
Tfnw_Aufl_A	 Ausnutzungsgrad f ür Tragf
Tfnw_Aufl_B	 Ausnutzungsgrad f ür Tragf
Gfnw_Sigma	- Ausnutzungsgrad für Gebrauchsfähigkeitsnachweis der Deckschichtnormalspannungen
Gfnw_Tau	- Ausnutzungsgrad für Gebrauchsfähigkeitsnachweis der Schubspannungen
Gfnw_Aufl_A	- Ausnutzungsgrad für Gebrauchsfähigkeitsnachweis der Auflagerpressung am Endauflager
Gfnw_Aufl_B	- Ausnutzungsgrad für Gebrauchsfähigkeitsnachweis der Auflagerpressung am Mittelauflager
Gfnw_Ver	- Ausnutzungsgrad beim Verformungsnachweis
Bef_End NRd_End	 Ausnutzungsgrad f ür Befestigungsnachweis am Endauflager Bemessungszugkraft des Befestigungsnachweises am Endauflager
Bef_Zw	 Ausnutzungsgrad f ür Befestigungsnachweis am Zwischenauflager
NRd_Zw	- Bemessungszugkraft des Befestigungsnachweises am Zwischenauflager
Aufl1_Tfnw	 erforderliche Auflagergröße am 1. Auflager beim Tragfähigkeitsnachweis in cm
Aufl2_Tfnw	 erforderliche Auflagergröße am 2. Auflager beim Tragfähigkeitsnachweis in cm
Aufl3_Tfnw	 erforderliche Auflagergröße am 3. Auflager beim Tragfähigkeitsnachweis in cm
Aufl4_Tfnw	 erforderliche Auflagergröße am 4. Auflager beim Tragfähigkeitsnachweis in cm

iS - engineering GmbH _____

Aufl1_Gfnw	-	erforderliche Auflagergröße am 1. Auflager beim Gebrauchsfähigkeitsnachweis in cm
Aufl2_Gfnw	-	erf. Auflagergröße am 2. Auflager beim Gebrauchsfähigkeitsnachweis in cm
Aufl3_Gfnw	-	erf. Auflagergröße am 3. Auflager beim Gebrauchsfähigkeitsnachweis in cm
Aufl4_Gfnw	-	erf. Auflagergröße am 4. Auflager beim Gebrauchsfähigkeitsnachweis in cm
NSd_End NSd_Zw	-	vorh. $\gamma_{\text{F}}\text{-}\text{fache}$ Auflagerkraft für Befestigung am Endauflager vorh. $\gamma_{\text{F}}\text{-}\text{fache}$ Auflagerkraft für Befestigung am Zwischenauflager

3) Stützweitentabellen in den Dateien "Table-*Lastfall-Elementbezeichnung*.TXT"

Die Stützweitentabellen sind als Ergebnisse in den Textdateien "Table-*Lastfall–Elementbezeichnung*.TXT" gespeichert, getrennt für den jeweils ausgewählten Lastfall.

Die Datei kann mit dem windowseigenen Programm WordPad oder mit einem anderen üblichen Textverarbeitungsprogramm wie z.B. Microsoft© Word geöffnet werden.

Es besteht die Möglichkeit, die Ergebnisse in Microsoft Excel © zu kopieren, um eine übersichtliche tabellarische Darstellung zu erhalten. Das Trennzeichen der Zellen wäre dabei der Tabulator.

Die Ergebnisse sind tabellarisch erfasst mit der Lastordinate als Spaltenbezeichnung und die Feld-, Farben- und Verformungsbegrenzung als Zeilenbezeichnung. Die Stützweite als Ergebnis ist in der Einheit [m] angegeben.

Neben der Information der zulässigen Stützweite auch die erforderliche Auflagerbreite mit ausgegeben. Dies ist speziell für die andrückenden Lastfälle Schnee, Winddruck und "delta g" wichtig. Oberhalb der zulässigen Stützweite ist die erforderliche Auflagerbreite für die Endauflager, unterhalb der zulässigen Stützweite die erforderliche Auflagerbreite für die Mittelauflager, jeweils in der Einheit [mm] angegeben.

Die Spalte FG gibt die jeweilige Farbgruppe an. Wenn hinter der Farbgruppenangabe eine Bezeichnung "(f)" angefügt ist, zeigt dies an, dass die Ergebnisse dieser Zeile für Durchbiegungsbegrenzungen gelten.

Nachfolgend die Stützweitentabelle für das Musterbeispiel mit Lastfall Schneelast

→ "Table-Schnee-*Elementbezeichnung*.TXT"

			nier $s = 0$,	,25 KIN/M²	
nee - Muster-Dach/Sample-ro	oof 140 0,63 0,50	/			
Felder FG Schr	iee	▶			
	0	0,25	0,5	0,75	1
	40	40	40	40	40
1 1(f)	9,27	8,52	7,5	5,36	4,17
	40	40	40	40	40
1 2(f)	9,27	8,52	7,5	5,36	4,17
	40	40	40	40	40
1 3(f)	9,27	8,52	7,5	5,36	4,17
	40	40	40	40	40
2 1(f)	12,88	9,35	5,62	4,02	3,13
	60	60	60	60	60
	40	40	40	40	40
2 2(f)	12,88	9,35	5,62	4,02	3,13
	60	60	60	60	60
	40	40	40	40	40
2 3(f)	12,88	9,35	5,62	4,02	3,13
	60	60	60	60	60
	40	40	40	40	40
3 1(f)	12,82	9,35	5,62	4,02	3,13
	60	60	60	60	60
	40	40	40	40	40
3 2(f)	12,83	9,35	5,62	4,02	3,13
	60	60	60	60	60
	40	40	40	40	40
3 3(†)	12,82	9,36	5,62	4,02	3,13
	Ergebnis		00	60	00
ahl der Felder \	40	Auflagerb	oreite Enda	uflager [cn	n]
n = 3	9,35	zulässige	Stützweite	[m]	-
	60	Auflagerb	oreite Zwisc	henauflag	er [cm

Nachfolgend die Stützweitentabelle für das Musterbeispiel mit Lastfall Winddruck

→ "Table-Winddruck-Elementbezeichnung.TXT"

	\				hier wd =	0,20 kN/n	n²
Winddruck -	Muster-Dach	Sample-roof	140 0,63 0,50				
Felder	FG	Winddruck					
			0	0,1	0,2	0,3	0,4
			40	40	40	40	40
1	1(f)		9,27	9,27	9,28	9,28	8,92
			40	40	40	40	40
1	2(f)		9,27	9,27	9,28	9,28	8,92
			40	40	40	40	40
1	3(f)		9,27	9,27	9,28	9,28	8,92
			40	40	40	40	40
2	1(f)		12,88	11,04	9,89	8,26	6,69
			60	60	60	60	60
			40	40	40	40	40
2	2(f)		12,88	11,04	9,89	8,26	6,69
			60	60	60	60	60
			40	40	40	40	40
2	3(f)		12,88	11,04	9,89	8,26	6,69
~~~			60	60	60	60	60
	1/5)		40	40	40	40	40
3	T(1)		12,82	12,82	10,78	8,25	0,09
			40	40	00	40	40
2	2(f)		12.83	12.84	10.78	8 26	6 69
			60	60	60	60	60
			40	40	40	40	40
.3	3(f)		12,82	12,83	10,78	8,26	6,69
Y J			60	60	60	60	60
			Fraebnis				
nzahl der	Felder		40	Auflager	breite Enda	uflager (cn	าไ
ier n = 3	١		10,78	zulässige	Stützweite	[m]	1
			60	Auflager	breite Zwisc	henauflag	er [cm]
			60	Auflager	breite Zwisc	henauflag	er [cm

Nachfolgend die Stützweitentabelle für das Musterbeispiel mit Lastfall Windsog

### → "Table-Windsog-*Elementbezeichnung*.TXT"

0 40	-0,1	-0.2		
40	-0,1	-0.2		
40		-0,2	-0,3	-0,4
	40	40	40	40
9,27	9,27	9,27	9,27	9,27
40	40	40	40	40
9,27	9,27	9,27	9,27	9,27
40	40	40	40	40
9,27	9,27	9,27	9,27	9,27
40	40	40	40	40
12,88	12,88	12,88	12,88	10,72
60	60	60	60	60
40	40	40	40	40
12,88	12,88	12,88	12,88	10,72
60	60	60	60	60
40	40	40	40	40
12,88	12,88	12,88	12,88	10,72
60	60	60	60	60
40	40	40	40	40
12,82	12,82	12,82	12,82	10,72
60	60	60	60	60
40	40	40	40	40
12,83	12,83	12,83	12,83	10,72
60	60	62	60	60
40	40	40	40	40
12,82	12,82	12,82	12,82	10,72
60	60	60	60	60
	40       9,27       40       9,27       40       9,27       40       12,88       60       40       12,88       60       40       12,88       60       40       12,88       60       40       12,88       60       40       12,88       60       40       12,83       60       40       12,83       60       40       12,83       60       40       12,83       60       40	40       40         9,27       9,27         40       40         9,27       9,27         40       40         9,27       9,27         40       40         12,88       12,88         60       60         40       40         12,88       12,88         60       60         40       40         12,88       12,88         60       60         40       40         12,88       12,88         60       60         40       40         12,88       12,88         60       60         40       40         12,82       12,83         60       60         40       40         12,83       12,83         60       60         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40         40       40	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Hier: Farbgruppe II; Durchbiegungsbegrenzung ist berücksichtigt

Hinweis: bei den abhebenden Lastarten (Windsog) werden in den Ergebnis-Tabellen die Auflagerbreiten mit ausgedruckt, auch wenn sie für diese Lastart nicht maßgebend sind und in den Stützweitentabellen nicht mitaufgelistet werden.